CALCULATING VOLUME

(i) Calculate the number of moles of copper(II) nitrate present in the 18.8 g.

A teacher heated 18.8g of copper(II) nitrate.

mol	[2]
Calculate the maximum number of moles of oxygen that can be made by heating 18.8 copper(II) nitrate.	g of
mol	[1]
Calculate the maximum volume of oxygen at room temperature and pressure, in cm³, to can be made by heating 18.8g of copper(II) nitrate.	hat
cm ³	[1]

MARKING SCHEME:

(i)	M1 188 M2 (18.8 / 188) = 0.1(00)	2
(ii)	0.05	1
(iii)	1200	1

2

Dilute sulfuric acid reacts with aqueous sodium hydrogencarbonate in a neutralisation reaction.

$$H_2SO_4(aq) + 2NaHCO_3(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I) + 2CO_2(g)$$

In a titration, 0.200 mol/dm³ aqueous sodium hydrogencarbonate was used to neutralise 20.0 cm³ of dilute sulfuric acid of concentration 0.150 mol/dm³.

(i) Calculate the number of moles of dilute sulfuric acid used in the titration.

	mol	Γ1 ⁻
	HIOI	L 1.

(ii) Calculate the number of moles of sodium hydrogencarbonate needed to neutralise the dilute sulfuric acid.

(iii) Calculate the volume, in cm³, of 0.200 mol/dm³ aqueous sodium hydrogencarbonate needed to neutralise the dilute sulfuric acid.

MARKING SCHEME:

(i)	0.003	1
(ii)	0.006	1
(iii)	30	1